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a b s t r a c t 

This paper proposes two tensor-based receivers for multiple-input multiple-output (MIMO) multi-relaying 

systems capable of jointly estimating the channels and symbols in a semi-blind fashion. Assuming space- 

time coding at the source and relay stations, we propose an orthogonal design based on a parallel factor 

(PARAFAC) analysis of the coding structure. Exploiting the proposed tensor codes and the multi-linear 

structure of the resulting received signals, we show that the data model for every relay-assisted link 

after space-time combining/decoding has a Kronecker structure, which can be recast as a rank-one tensor 

corrupted by noise. The proposed receivers combine the tensor signals for the multiple cooperative links 

for joint channel and symbol estimation by coupling multiple rank-one tensor approximation problems. 

The first one is a coupled-SVD based receiver that estimates all the involved communication channels 

and transmitted symbols in closed form. The second one is an iterative solution based on alternating 

least squares. The performances of both receivers are evaluated by means of computer simulations in 

a variety of system configurations. Our results show the effectiveness of the proposed receivers and its 

good performance-complexity trade-off in comparison with competing receivers. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In modern wireless communications, cooperative diversity is a

ey concept to overcome the channel impairments, such as fading,

hadowing, and path loss, resulting in enhanced coverage and in-

reased system capacity [1–4] . In cooperative diversity infrastruc-

ures, multiple wireless links are established by using relay sta-

ions to help the communication between source and destination

odes [5] . As a result, a virtual multiple input multiple output

MIMO) system with increased spatial degrees of freedom is cre-

ted [6] . 

However, for achieving the potential gains of cooperative com-

unications, an accurate knowledge of channel state information

CSI) associated with the multiple hops involved in the communi-

ation is necessary. Moreover, the use of precoding/beamforming

echniques at the source and/or relays generally requires instanta-

eous channel knowledge of the different links to optimize trans-

ission [7] . In practice, the CSI is unknown and is usually esti-

ated with the aid of training sequences. Also, in cooperative com-

unications, especially with multiple hops, impairments such as
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arrier frequency offset and timing offset become present in the

ystem. The references [8,9] present discussions and good solu-

ions to overcome these impairments. However, dealing with car-

ier frequency offset and timing offset is beyond the scope of this

ork. We focus on the tensor-based receiver design for the multi-

elaying system to compare our receivers with the state of art so-

utions in the literature. 

In the past decade, the use of multilinear algebra for modeling

IMO wireless communications has been growing [10–17] , and has

esulted, more recently, in proposals of tensor-based receivers for

ooperative communication systems [18–24] . The main interest has

een on the use of tensor decompositions to model the received

ignal as well as to derive receiver algorithms exploiting multiple

orms of signal diversity. Another feature of tensor-based receivers

s their build in semi-blind signal and channel recovery capability,

hich avoids the use of bandwidth consuming training sequences

or channel estimation. Most of these works rely on generaliza-

ions of parallel factors (PARAFAC) [25] and Tucker [26] decomposi-

ions or hybrids of these decompositions, such as the PARATUCK-2

21,24] , Nested-PARAFAC [22,27] and Nested-Tucker [23] decompo-

itions. It is worth to mention the references [15,17] where the ad-

antages of using coupled-tensor solutions for parameter estima-

ion are presented, especially the work [17] , where this coupling

pproach is directly applied to array signal processing. 

https://doi.org/10.1016/j.sigpro.2019.107254
http://www.ScienceDirect.com
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Closely related to the present work are those proposed in

[18,22–24,27] . The authors of [18] develop a tensor-based chan-

nel estimation algorithm for two-way MIMO relaying systems us-

ing training sequences. In [20] , channel estimation for a two-hop

MIMO relaying system is addressed via PARAFAC analysis, while in

[24] , a supervised joint channel estimation algorithm is proposed

for one-way three-hop communication systems with two relay lay-

ers. Note that both Roemer and Haardt [18] and Cavalcante et al.

[24] propose pilot-assisted schemes. To avoid training sequences,

in [22] the authors deal with a semi-blind joint channel and sym-

bol estimation for a two-hop MIMO relaying system using a Nested

PARAFAC modeling approach. In a more recent work [23] , a gener-

alization of Ximenes et al. [22] is proposed by adopting full space-

time coding at the source and the relay in a two-hop MIMO re-

laying system. Therein, the authors also derive two semi-blind re-

ceivers. The first is based on alternating least squares (ALS) esti-

mation while the second is a closed-form solution one based on a

two-step least squares Kronecker product (LSKP) factorization. Both

solutions in [23] have shortcomings that may limit their applica-

bility. On the one hand, the ALS-based receiver requires the com-

putation of matrix inverses at every iteration, while the LSKP ac-

complishes channel and symbol estimation in two sequential steps

(2LSKP) being susceptible to error propagation. On the other hand,

supervised receivers such as that of Cavalcante et al. [24] assume

that the source transmits long training sequences, which we want

to avoid. The idea of joint channel and symbol estimation based

on a rank-one tensor modeling approach was originally proposed

in [28] , and have shown to be a computationally attractive solu-

tion compared to the approach of Favier et al. [23] . 

In this paper, we propose two semi-blind receivers, that are ex-

tensions to the approach of Sokal et al. [28] by considering multi-

ple cooperative links in a three-hop MIMO relaying systems. We

start from the same system model as in [23,28] , where tensor

space-time coding is used at the source and the relay stations,

which results in Nested Tucker models for the signals received

at the destination. We show how to convert the received signal

model of each relay-assisted link into a rank-one tensor, after a

pre-processing stage (space-time filtering) that exploits the multi-

linear structure of the space-time coding tensors. More specifically,

we first propose an orthogonal design based on a PARAFAC decom-

position of the space-time coding tensors with fixed rank, which

are properly chosen to satisfy an orthogonality constraint. Then, by

exploiting the proposed tensor codes and the multi-linear struc-

ture of the resulting received signal, we propose semi-blind re-

ceivers based on rank-one tensor approximations which yield ac-

curate and less computationally demanding estimates of the chan-

nels and symbols, compared to competing state-of-the-art tensor-

based receivers. The proposed receivers also combine the signals

from different cooperative links for joint channel and symbol esti-

mation by coupling multiple rank-one tensor approximation prob-

lems as a single problem. 

In summary, the main contributions of this paper can be listed

as follows: 

1. We show that the joint-semi-blind channel and symbol estima-

tion in a two-hop MIMO relaying system can be made simpler

by exploiting the tensor space-time coding structure at the re-

ceiver, which allows replacing a Nested Tucker model fitting by

a Kronecker approximation problem after space-time combin-

ing/decoding. More specifically, following the idea proposed in

[29] , we propose a rearrangement of a N -factor Kronecker ap-

proximation problem into a N th order rank-one tensor approxi-

mation problem, the solution of which delivers estimates of the

involved communication channels and transmitted symbols at

high accuracy and low complexity; 
2. Two semi-blind receivers are proposed that couple the tensor

received signals of the multiple relay links via rank-one ten-

sor approximation problems while exploiting cooperative di-

versity in different ways. The first algorithm, referred to as

coupled-SVD (C-SVD), estimates all the involved communica-

tion channels and transmitted symbols in a closed form. The

second solution consists of a coupled alternating least squares

(C-ALS) algorithm that combines estimates from multiple coop-

erative links while avoiding matrix inversions due to the rank-

one property of the involved signals. As will be discussed later,

the C-SVD receiver becomes more attractive than the C-ALS in a

low energy per symbol to noise power spectral density ( E S / N 0 )

regime, due to the number of iterations required for the C-ALS

to converge, also in scenarios where the code length of the

space-time coding tensors at the relays is small. 

The rest of this paper is structured as follows. In Section 2 , we

resent the least squares Kronecker approximation problem and

ink it to a rank-one tensor approximation problem. In Section 3 ,

e describe the system model. The pre-processing stage performed

y the receivers is detailed in Section 4 . The proposed C-SVD and

-ALS receivers are formulated in Sections 5.1 and 5.2 , respectively.

imulation results are presented in Section 6 and the paper is con-

luded in Section 7 . 

.1. Notation and properties 

Scalars are denoted by lower-case letters (a, b, . . . ) , vectors by

old lower-case letters ( a , b , . ) , matrices by bold upper-case let-

ers ( A , B , . ) , t ensors are defined by calligraphic upper-case let-

ers (A , B, . . . ) . A 

T , A † , A 

∗, A 

H stand for transpose, Moore–Penrose

seudo-inverse, conjugate and Hermitian of A , respectively. The

perators �, � and ◦ define the Kronecker, Khatri–Rao and the

uter product, respectively. 

For a matrix A ∈ C 

I×R , the vec( · ) operator vectorizes a matrix

y stacking its columns, i.e., vec (A ) = a ∈ C 

IR ×1 , while unvec( · )

oes the inverse operation, i.e., unvec (a ) = A ∈ C 

I×R . The frontal

lices of a third-order tensor X ∈ C 

I 1 ×I 2 ×I 3 are matrices denoted by

 ..i 3 
∈ C 

I 1 ×I 2 , with i 3 = { 1 , · · · , I 3 } . 
For an N th order tensor X ∈ C 

I 1 ×···×I N there are several ways to

atricize it. The n -mode unfolding of X is the matrix defined as

 (n ) ∈ C 

I n ×I 1 , ... ,I n −1 I n +1 , ... I N . The generalized unfolding is the matrix

here the rows and columns are defined by grouping a subset of

imensions. For instance, consider the case of a fourth-order ten-

or G ∈ C 

I×J×K×L , the generalized unfolding [ G ] [(1 , 3) , (2 , 4)] ∈ C 

IK×JL is

ormed by grouping the first and third dimensions ( I and K ) along

he rows while grouping the second and fourth dimensions ( J and

 ) along the columns, see [30] . 

The n -mode product between a tensor X ∈ C 

I 1 ×···×I N and a ma-

rix A ∈ C 

J 1 ×I 1 is defined as Y = X ×1 A , where Y ∈ C 

J 1 ×I 2 ×···×I N ,

o that Y (1) = AX (1) ∈ C 

J 1 ×I 2 ···I N . Consider two third-order tensors

 ∈ C 

I 1 ×R ×I 2 and Y ∈ C 

R ×J 1 ×J 2 , where the dimension of the 2-

ode of X is equal to the dimension of the 1-mode of Y . The (2,1)-

ode contraction between these two tensors is symbolized by

 = X •1 
2 Y, i.e., g i 1 i 2 j 1 j 2 = 

∑ R 
r=1 x i 1 ri 2 

y r j 1 j 2 
, where G ∈ C 

I 1 ×I 2 ×J 1 ×J 2 . A

ank-one third-order tensor is defined as the outer product of three

ectors and is symbolized by X ∈ C 

I 1 ×I 2 ×I 3 = a ◦ b ◦ c , with a ∈
 

I 1 ×1 , b ∈ C 

I 2 ×1 , c ∈ C 

I 3 ×1 . Note that vec (a ◦ b ◦ c ) = c � b � a . We

ake use of the following properties 

(A � B )(C � D ) = AC � BD (1)

ec ( ABC ) = (C 

T 
� A ) vec (B ) (2)

ec (A D n (B ) C ) = (C 

T � A ) b 

T 
n , (3)
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here D n (B) is a diagonal matrix formed by the n th row of B , and

 

T 
n is the transposition of the n th row vector of B . Given a third-

rder PARAFAC tensor X = I R ×1 A ×2 B ×3 C ∈ C 

I 1 ×I 2 ×I 3 , its frontal

lices are given by 

 ..i 3 = A D i 3 (C ) B 

T ∈ C 

I 1 ×I 2 , (4) 

here i 3 = { 1 , . . . , I 3 } , and A ∈ C 

I 1 ×R , B ∈ C 

I 2 ×R , C ∈ C 

I 3 ×R are the

actor matrices, and R is the tensor rank of X . 

. Kronecker product approximation 

In this section, we show how to recast a three-factor Kronecker

actorization problem into a third-order rank-one tensor approxi-

ation. Such a link will play a key role in the design of the pro-

osed receivers. 

Consider the following minimization problem 

in φ(A , B ) 
A , B 

= ‖ 

X − A � B ‖ F , (5) 

here A ∈ C 

I 2 ×R 2 , B ∈ C 

I 1 ×R 1 and X = A � B + V ∈ C 

I 1 I 2 ×R 1 R 2 , and V

ontain zero-mean uncorrelated noise. For the problem in Eq. (5) ,

he authors in [29] proposed a solution based on a rank-one ma-

rix approximation (via SVD) of X (a permuted version of X con-

tructed according to Van Loan and Pitsianis [29] ). The problem in

5) becomes 

in φ(a , b ) 
a , b 

= 

∥∥X − b ◦ a 
∥∥

F 
, (6) 

eaning to find the nearest rank-one matrix to X , where a =
ec (A ) ∈ C 

I 2 R 2 ×1 and b = vec (B ) ∈ C 

I 1 R 1 ×1 . The Kronecker approx-

mation problem in (5) has been exploited previously in the lit-

rature. In [31] , Kronecker product approximations are derived for

hree-dimensional (3-D) image processing applications. By linking

he problems to tensor decompositions, the authors show that

 Kronecker-structured matrix approximation problem can be re-

uced to a computationally tractable problem involving third-order

ensor. This link is exploited to derive Kronecker approximation

reconditioners for iterative regularization. In [32] , the authors

roposed a solution generalizing [29] to a Kronecker product in-

olving N factor matrices. However, our proposed solution is di-

ectly related to rank-one tensors. 

In this work, we are interested in solving this problem for

 = 3 , which is the case of the proposed MIMO multi-relaying sys-

em discussed in the following sections. To this end, consider the

ollowing problem 

in φ(A , B , C ) 
A , B , C 

= ‖ 

X − A � B � C ‖ F , (7) 

here A ∈ C 

I 3 ×R 3 , B ∈ C 

I 2 ×R 2 and C ∈ C 

I 1 ×R 1 . The problem in

7) now becomes 

in φ(a , b , c ) 
a , b , c 

= ‖ 

x − a � b � c ‖ F , ⇐⇒ 

in φ(c , b , a ) 
c , b , a 

= 

∥∥X − c ◦ b ◦ a 
∥∥

F 
, (8) 
Fig. 1. Matrix D and its
here a = vec (A ) ∈ C 

I 3 R 3 ×1 , b = vec (B ) ∈ C 

I 2 R 2 ×1 , c = vec (C ) ∈
 

I 1 R 1 ×1 . We have that x = vec ( X ) and X = T { x } ∈ C 

I 1 R 1 ×I 2 R 2 ×I 3 R 3 ,

here the operator T {·} maps the elements of x into X , as follows

 q 1 +(q 2 −1) Q 1 +(q 3 −1) Q 1 Q 2 −→ 

T {·} X q 1 ,q 2 ,q 3 (9) 

here q i = { 1 , . . . , Q i } and Q i = I i R i , with i = { 1 , 2 , 3 } . 
Hence, finding the matrix triplet { A, B, C } that solves (7) is

quivalent to finding the vector triplet { a, b, c } that solves (8) , i.e.,

he solution of a Kronecker approximation problem can be recast

s the solution to a rank-one tensor approximation problem, for

hich effective algorithms exist in the literature (see, e.g., [33–35] ).

ere we generalize the block-matrix arrangement from Van Loan

nd Pitsianis [29] to map X to X resulting in a rank-one tensor

pproximation problem. 

Let us define D = A � B � C ∈ C 

I 1 I 2 I 3 ×R 1 R 2 R 3 . Due to its Kronecker

tructure, this matrix can be viewed in three different ways (block-

ivision): First, as a block matrix of size I 2 I 3 × R 2 R 3 , each element

f which being a matrix of size I 1 × R 1 . Second, as block matrix

f size I 3 × R 3 , each element being a matrix of size I 1 I 2 × R 1 R 2 
ormed by the block B �C . Third, the same matrix can be viewed

s the total matrix D . Our goal is to rearrange the elements of

 into a matrix D whose vectorization can be factored by a Kro-

ecker product of three vectors, i.e., d = a � b � c , where d =
ec ( D ) ∈ C 

I 1 R 1 I 2 R 2 I 3 R 3 ×1 . Fig. 1 provides an illustration of this map-

ing, where each block P 

(1) 
(i, j) 

is a matrix of size I 1 × R 1 , each block

 

(2) 
(k,l) 

is a matrix of size I 1 I 2 × R 1 R 2 , and the block P 

(3) is the to-

al matrix of size I 1 I 2 I 3 × R 1 R 2 R 3 . The upper index n of P 

(n ) 
(i, j) 

in-

icates the block division, with n ∈ {1, 2, 3}. The lower indices ( i,

 ) indicate the position of the matrix block P 

(n ) 
(i, j) 

inside the ma-

rix block P 

(n +1) 
(k,l) 

, where i = { 1 · · · I 2 } , j = { 1 · · · R 2 } , k = { 1 · · · I 3 } ,
 = { 1 · · · R 3 } , and n + 1 ≤ 3 . 

Let G (k,l) be a matrix of size I 1 R 1 × I 2 R 2 , each column of which

s the vectorization of the matrix block P 

(1) 
(i, j) 

(defined as p 

(1) 
(i, j) 

with

ize I 1 R 1 × 1) belonging to the bigger block P 

(2) 
(k,l) 

. We have 

 (k,l) = [ p 

(1) 
(1 , 1) 

, . . . , p 

(1) 
(I 2 , 1) 

, . . . , p 

(1) 
(I 2 ,R 2 ) 

] 
P (2) 

(k,l) 

. (10) 

inally, we define D of size I 1 R 1 I 2 R 2 × I 3 R 3 by collecting the column

ectors g (k,l) = vec ( G (k,l) ) of size I 1 R 1 I 2 R 2 × 1, as follows 

 = [ g (1 , 1) , . . . , g (I 3 , 1) , . . . , g (I 3 ,R 3 ) 
] P (3) . (11)

y applying the vec( · ) operator, we get d = a � b � c . Since the

ronecker product is directly related to the outer product, it fol-

ows that 

 = c ◦ b ◦ a , (12)

here D = T { d } ∈ C 

I 1 R 1 ×I 2 R 2 ×I 3 R 3 is a third-order rank-one tensor

ormed by the “tensorizing” d ∈ C 

I 1 R 1 I 2 R 2 I 3 R 3 ×1 . Note that the rank-

ne tensor formulation described in this section can be extended

o higher orders from a Kronecker factorization involving N > 3 ma-

rices, but we keep the focus on the case N = 3 due to the present

ontext. 
 block structure. 
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Fig. 2. MIMO multi-relaying system. 
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3. System model 

We consider a multi-relaying MIMO system where the source

is assisted by two half-duplex relays using the AF protocol. In this

system, M S denotes the number of transmit antennas at the source

and M D is the number of receive antennas at the destination. Re-

lay 1 is equipped with M 1 antennas, from which M S 1 
antennas

are used for transmission and M R 1 
for reception. Likewise, M 2 de-

notes the total number of antennas at Relay 2, with M S 2 
transmit

antennas and M R 2 
receive antennas. Fig. 2 provides an overview

of the system model. The transmission of information from the

source to the destination via the multiple relays involves a three-

phase transmission scheme. In the following, the tensor-based sig-

nal model for each phase is formulated using tensor n -mode prod-

uct, slice, contraction operations. This formalism is essential to ob-

tain the received signal model at the destination as a basis for de-

riving the proposed semi-blind receivers. It is important to men-

tion that all the processing is performed at the destination, i.e., the

relay station only codes the signal and forwards it. Moreover, for

simplicity, we assume perfect timing synchronization at the relays

and destination. 

Phase 1 . The source transmits the signal to Relay 1 and Relay 2.

The symbol matrix S ∈ C 

N×R contains R data streams of N symbols

each. These data streams are encoded at the source by means of a

space-time coding tensor C ∈ C 

M S ×R ×P , where P is the code length.

The transmitted signal tensor X 

(S) ∈ C 

M S ×N×P is given by the fol-

lowing n -mode product and slice matrix product as: 

X 

(S) = C ×2 S (13)

X 

(S) 
..p = C ..p S 

T ∈ C 

M S ×N . (14)

Each symbol is repeated P times over the M S antennas creating

a space-time redundancy, i.e., we have P time-slots with N sym-

bols each. Considering H 

(SR 1 ) ∈ C 

M R 1 
×M S as the channel between

the source and the Relay 1, and H 

(SR 2 ) ∈ C 

M R 2 
×M S as the channel

between the source and Relay 2, the signal received at Relay 1 is

the tensor X 

(SR 1 ) ∈ C 

M R 1 
×N×P 

and can be written, in n -mode prod-

uct and slice notation, respectively, as 

X 

(SR 1 ) = X 

(S) ×1 H 

(SR 1 ) + V (SR 1 ) (15)

X 

(SR 1 ) 
..p = H 

(SR 1 ) X 

(S) 
..p + V 

(SR 1 ) 
..p ∈ C 

M R 1 
×N , (16)

where V (SR 1 ) ∈ C 

M R 1 
×N×P 

is the additive white Gaussian noise

(AWGN) at Relay 1. The signal received at Relay 2, X 

(SR 2 ) ∈
C 

M R 2 
×N×P 

is given by 

X 

(SR 2 ) = X 

(S) ×1 H 

(SR 2 ) + V (SR 2 ) (17)

X 

(SR 2 ) 
..p = H 

(SR 2 ) X 

(S) 
..p + V 

(SR 2 ) 
..p ∈ C 

M R 2 
×N , (18)
here V (SR 2 ) ∈ C 

M R 2 
×N×P 

is the AWGN tensor at Relay 2. 

Phase 2 . Since we are considering half-duplex nodes, the source

tays silent and only one relay transmits in this phase. Without

oss of generality, let us assume that Relay 1 transmits and Relay 2

tays in silent. In this case, the signal X 

(SR 1 ) received in the previ-

us phase by Relay 1, is coded and forwarded to Relay 2 and to the

estination. A space-time coding tensor W ∈ C 

M S 1 
×M R 1 

×J 
is used for

his purpose, assuming M S 1 
transmit antennas. Similarly to Phase 1,

 space-time spreading structure is created, having now J frames,

ach with P time-slots. Defining H 

(R 1 R 2 ) ∈ C 

M R 2 
×M S 1 as the chan-

el connecting Relay 1 and Relay 2, and H 

(R 1 D ) ∈ C 

M D ×M S 1 as the

hannel between Relay 1 and the destination, the signal received

t Relay 2, X 

(SR 1 R 2 ) ∈ C 

M R 2 
×J ×N ×P 

is given by 

 

(SR 1 R 2 ) = (W •1 
2 X 

(SR 1 ) ) ×1 H 

(R 1 R 2 ) + V (SR 1 R 2 ) 

= (W ×1 H 

(R 1 R 2 ) ) •1 
2 X 

(SR 1 ) + V (SR 1 R 2 ) 

= H̄ 

(R 1 R 2 ) •1 
2 X 

(SR 1 ) + V (SR 1 R 2 ) (19)

 

(SR 1 R 2 ) 
. j.p 

= H 

(R 1 R 2 ) W .. j X 

(SR 1 ) 
..p + V 

(SR 1 R 2 ) 
. j.p 

∈ C 

M R 2 
×N , (20)

here V (SR 1 R 2 ) ∈ C 

M R 2 
×J ×N ×P 

is the AWGN at Relay 2 (in Phase 2),

hile H̄ 

(R 1 R 2 ) = W ×1 H 

(R 1 R 2 ) ∈ C 

M R 2 
×M R 1 

×J 
is the effective channel

ensor. The signal X 

(SR 1 D ) ∈ C 

M D ×J ×N ×P received at the destination

an be written as 

 

(SR 1 D ) = H̄ 

(R 1 D ) •1 
2 X 

(SR 1 ) + V (SR 1 D ) (21)

 

(SR 1 D ) 
. j.p 

= H 

(R 1 D ) W .. j X 

(SR 1 ) 
..p + V 

(SR 1 D ) 
. j.p 

∈ C 

M D ×N , (22)

here V (SR 1 D ) ∈ C 

M D ×J ×N ×P is the AWGN at the destination, and
¯
 

(R 1 D ) = W ×1 H 

(R 1 D ) ∈ C 

M D ×M R 1 
×J 

is the effective channel tensor. 

Phase 3 . Now, the source and Relay 1 stay silent while Relay

 transmits the signal received in Phase 1 ( X 

(SR 2 ) ) and in Phase 2

 X 

(SR 1 R 2 ) ) to the destination. For this transmission, the Relay 2 con-

atenates the signals X 

(SR 2 ) along the second mode of the tensor

 

(SR 1 R 2 ) as follows 

 = X 

(SR 1 R 2 ) � 2 X 

(SR 2 ) ∈ C 

M R 2 
×(J +1) ×N ×P (23)

where X . (1: J) .. = X 

(SR 1 R 2 ) ∈ C 

M R 2 
×J ×N ×P 

X . (J+1) .. = X 

(SR 2 ) ∈ C 

M R 2 
×1 ×N×P . 

he concatenated signal is coded by means of a space-time cod-

ng tensor T ∈ C 

M S 2 
×M R 2 

×K 
and forwarded to the destination us-

ng M S 2 
transmit antennas. The coding tensor introduces an ad-

itional space-time spreading to the forwarded signals, by cod-

ng information across K super-frames. This results in P (J + 1) K

hannel uses. Let H 

(R 2 D ) ∈ C 

M D ×M S 2 be the channel between Re-

ay 2 and the destination. The signals received at the destination

 

(SR 1 R 2 D ) ∈ C 

M D ×K×(J +1) ×N ×P are then given by 

 

(SR 1 R 2 D ) = H̄ 

(R 2 D ) •1 
2 X + V (SR 1 R 2 D ) 

(24)

 

(SR 1 R 2 D ) 

.k ( j+1) .p = H 

(R 2 D ) T ..k X . ( j+1) .p + V 

(SR 1 R 2 D ) 

.k ( j+1) .p ∈ C 

M D ×N (25)

here V (SR 1 R 2 D ) ∈ C 

M D ×K×(J +1) ×N ×P is the AWGN at the destination,

nd H̄ 

(R 2 D ) = T ×1 H 

(R 2 D ) ∈ C 

M D ×M R 2 
×K 

is the effective channel. 

The goal of the proposed receiver is to combine the three tensor

ignals at the destination, namely X 

(SR 1 D ) , X 

(SR 2 D ) , and X 

(SR 1 R 2 D ) .

y combining all tensor signals coherently at the destination, co-

perative diversity is exploited to jointly estimate the symbols and

hannel matrices, as will be shown later. 
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. Pre-processing stage 

This section discusses the pre-processing stage applied before

he channel and symbol estimation. It consists of a space-time fil-

ering that exploits the knowledge and the multi-linear structure

f the coding tensors ( C, W and T ). 
First, let us consider the signal X 

(SR 1 D ) received at the destina-

ion from Relay 1 during Phase 2. From Eq. (22) , ignoring the noise

erm, and replacing X 

(SR 1 ) 
..p as in Eq. (16) , we have 

 

(SR 1 D ) 
. j.p 

= H 

(R 1 D ) W .. j H 

(SR 1 ) C ..p S 
T . (26)

aking use of Property (2) , and defining x 
(SR 1 D ) 

j,p 
= vec (X 

(SR 1 D ) 

. j.p 
) ,

ields 

 

( SR 1 D ) 
. j.p 

= 

(
S � H 

( R 1 D ) 
)
vec 

(
W .. j H 

( SR 1 ) C ..p 

)
= 

(
S � H 

( R 1 D ) 
)(

C 

T 
..p � W .. j 

)
vec 

(
H 

( SR 1 ) 
)

= 

(
vec 

(
H 

( SR 1 ) 
)T 

� S � H 

( R 1 D ) 
)

vec 
(
C 

T 
..p � W .. j 

)
. 

et us define Y 

(SR 1 D ) ∈ C 

M D N×M S 1 
RM R 1 

M S the matrix 

 

(SR 1 D ) = vec (H 

(SR 1 ) ) T 

� S � H 

(R 1 D ) , (27) 

y collecting the JP vectors { x (SR 1 D ) 

. j.p 
} , j = 1 , . . . , J, p = 1 , . . . , P as

olumn vectors, we form [ X 

(SR 1 D ) ] ([1 , 3] , [2 , 4]) ∈ C 

M D N ×J P , which is a

eneralized unfolding of X 

(SR 1 D ) , that can be written as 

[ X 

(SR 1 D ) ] ([1 , 3] , [2 , 4]) = [ Y 

(SR 1 D ) vec (C 

T 
.. 1 � W .. 1 ) , . . . , 

Y 

(SR 1 D ) vec (C 

T 
..P � W ..J )] = Y 

(SR 1 D ) Z 

(1) , (28) 

here Z 

(1) ∈ C 

M S 1 
RM R 1 

M S ×JP 
is the effective coding matrix whose

olumns are { vec (C 

T 
..p � W .. j ) } , j = 1 , . . . , J, p = 1 , . . . , P, represent-

ng the space-time filter. Adding the noise term in Eq. (28) we have

 X 

(SR 1 D ) ] ([1 , 3] , [2 , 4]) = Y 

(SR 1 D ) Z 

(1) + [ V 

′ (SR 1 D ) ] ([1 , 3] , [2 , 4]) , (29)

here [ V 

′ (SR 1 D ) ] ([1 , 3] , [2 , 4]) is a generalized unfolding of the global

oise tensor V ′ (SR 1 D ) ∈ C 

M D ×J ×N ×P , which is composed by the noise

erm V (SR 1 ) filtered by H̄ 

(R 1 D ) and added to the V (SR 1 D ) at the des-

ination. The tensor V ′ (SR 1 D ) can be expressed as 

 

′ (SR 1 D ) = ( H̄ 

(R 1 D ) •1 
2 V (SR 1 ) ) + V (SR 1 D ) ∈ C 

M D ×J ×N ×P . 

Now, consider the signals X 

(SR 1 R 2 D ) at the destination com-

ng from Relay 2, defined in Eq. (24) . Note that this tensor

ignal concatenates contributions from Relay 2 in Phases 1 and

 (cf. Eq. (23) ). More specifically, we have X 

(SR 1 R 2 D ) = H̄ 

(R 2 D ) •1 
2 

X 

(SR 1 R 2 ) � 2 X 

(SR 2 ) 
)

∈ C 

M D ×K×(J +1) ×N ×P . The destination extracts

hese two signals from X 

(SR 1 R 2 D ) by separating the first J ten-

or slices to form the tensor signal X 

(SR 1 R 2 D ) ∈ C 

M D ×K×J ×N ×P , while

he (J + 1) th slice is used to form the tensor signal X 

(SR 2 D ) ∈
 

M D ×K×N×P . 

In a way similar to Eq. (25) and using Eq. (20) , we can write

he noiseless signal X 

(SR 1 R 2 D ) in matrix slice notation as follows 

 

( SR 1 R 2 D ) 
. kj .p 

= H 

( R 2 D ) T ..k X 

( SR 1 R 2 ) 
. j.p 

= H 

( R 2 D ) T ..k H 

( R 1 R 2 ) W .. j X 

( SR 1 ) 
..p 

= H 

( R 2 D ) T ..k H 

( R 1 R 2 ) W .. j H 

( SR 1 ) C ..p S 
T . 

(30) 

pplying Property (2) multiple times, and defining x k, j,p =
ec (X 

(SR 1 R 2 D ) 

.k j.p 
) yields 

 k, j,p = 

(
S � H 

( R 2 D ) 
)
vec 

(
T ..k H 

( R 1 R 2 ) W .. j H 

( SR 1 ) C ..p 

)
= 

(
S � H 

( R 2 D ) 
)(

C 

T 
..p � T ..k 

)
vec 

(
H 

( R 1 R 2 ) W .. j H 

( SR 1 ) 
)

= 

(
S � H 

( R 2 D ) 
)(

C 

T 
..p � T ..k 

)(
H 

( SR 1 ) T � H 

( R 1 R 2 ) 
)
vec 

(
W .. j 

)
. 
y collecting all the J frames, we get 

 .k.p = 

(
S � H 

( R 2 D ) 
)(

C 

T 
..p � T ..k 

)(
H 

( SR 1 ) T � H 

( R 1 R 2 ) 
)
W 

T 
( 3 ) ∈ C 

M D N×J 
, 

(31) 

here W (3) ∈ C 

M S 1 
M R 1 

×J 
is the 3-mode unfolding of the space-

ime coding tensor W ∈ C 

M S 1 
×M R 1 

×J 
, which is a matrix whose

olumns are { vec (W .. j ) } , j = 1 , . . . , J. Defining X 

′ 
.k.p 

= X .k.p W 

* 
(3) 

∈
 

M D N×M S 1 
M R 1 , yields 

 

′ 
.k.p = (S � H 

(R 2 D ) )(C 

T 
..p � T ..k )(H 

(SR 1 ) T � H 

(R 1 R 2 ) ) . (32)

pplying Property (2) in Eq. (32) , with x ′ 
k,p 

= vec (X 

′ 
.k.p 

) , yields 

 

′ 
k,p = (H 

(SR 1 ) � H 

(R 1 R 2 ) T � S � H 

(R 2 D ) ) vec (C 

T 
..p � T ..k ) . 

et us define Y 

(SR 1 R 2 D ) ∈ C 

M D NM S 1 
M R 1 

×M S 2 
RM R 2 

M S 

 

(SR 1 R 2 D ) = H 

(SR 1 ) � H 

(R 1 R 2 ) T � S � H 

(R 2 D ) , (33)

y collecting the KP vectors { x ′ 
k,p 

} , k = 1 , . . . , K, p = 1 , . . . , P 

s column vectors, we form the matrix [ X 

′ (SR 1 R 2 D ) ] ([1 , 4 , 3] , [2 , 5]) ∈
 

M D NM S 1 
M R 1 

×KP 
, 

[ X 

′ (SR 1 R 2 D ) ] ([1 , 4 , 3] , [2 , 5]) = [ Y 

(SR 1 R 2 D ) vec (C 

T 
.. 1 � T .. 1 ) , . . . , 

Y 

(SR 1 R 2 D ) vec (C 

T 
..P � T ..K )] = Y 

(SR 1 R 2 D ) Z 

(2) , 

here Z 

(2) ∈ C 

M S 2 
RM R 2 

M S ×KP 
is the effective coding matrix whose

olumns are { vec (C 

T 
..p � T ..k ) } , k = 1 , . . . , K, p = 1 , . . . , P, represent-

ng the space-time filter. 

Note that [ X 

′ (SR 1 R 2 D ) ] ([1 , 4 , 3] , [2 , 5]) also can be viewed as the gen-

ralized unfolding of the following filtered tensor 

 

′ (SR 1 R 2 D ) = X 

(SR 1 R 2 D ) ×3 W 

H 
(3) ∈ C 

M D ×K×M S 1 
M R 1 

×N×P . 

ow, taking into account the noise term, we have 

 X 

′ (SR 1 R 2 D ) ] ([1 , 4 , 3] , [2 , 5]) = Y 

(SR 1 R 2 D ) Z 

(2) + [ V 

′ (SR 1 R 2 D ) ] ([1 , 4 , 3] , [2 , 5]) , (34) 

here [ V 

′ (SR 1 R 2 D ) ] ([1 , 4 , 3] , [2 , 5]) is the generalized unfolding of the

lobal noise tensor filtered by W 

T 
(3) 

, given by 

 

′ (SR 1 R 2 D ) = 

[
H̄ 

(R 2 D ) •1 
2 

[
( H̄ 

(R 1 R 2 ) •1 
2 V (SR 1 ) ) + V (SR 1 R 2 ) 

]
+ V (SR 1 R 2 D ) 

]
×3 W 

H 
(3) ∈ C 

M D ×K×M S 1 
M R 1 

×N×P . 

From Eqs. (29) and (27) , we can formulate the following three-

actor Kronecker approximation problem 

min 

 

(SR 1 ) , S , H (R 1 D ) 

∥∥∥ˆ Y 

(SR 1 D ) − vec (H 

(SR 1 ) ) T 

� S � H 

(R 1 D ) 

∥∥∥
F 
, (35) 

here the solution 

ˆ 
 

(SR 1 D ) = [ X 

(SR 1 D ) ] ([1 , 3] , [2 , 4]) Z 

(1) H (36) 

s the received signal tensor filtered by the effective coding ma-

rix Z 

(1) . Likewise, from Eqs. (34) and (33) , we can formulate the

ollowing four-factor Kronecker approximation problem, 

min 

 

(SR 1 ) , H (R 1 R 2 ) , S , H (R 2 D ) 

∥∥ˆ Y 

(SR 1 R 2 D ) − H 

(SR 1 ) � H 

(R 1 R 2 ) T � S � H 

(R 2 D ) 
∥∥

F 
. (37) 

he solution of (37) is given by 

ˆ 
 

(SR 1 R 2 D ) = [ X 

(SR 1 R 2 D ) ] ([1 , 4 , 3] , [2 , 5]) Z 

(2) H , (38) 

hich corresponds to received signal tensor at the destination fil-

ered by the effective coding matrix Z 

(2) . 

We design Z 

(1) ∈ C 

M S 1 
RM R 1 

M S ×JP 
and Z 

(2) ∈ C 

M S 2 
RM R 2 

M S ×JP 
as

emi-unitary matrices, i.e., Z 

(i ) Z 

(i ) H = I M S i 
RM R i 

M S 
, i = 1 , 2 . As shown

n the Appendix A , if a PARAFAC decomposition is assumed for

he coding tensors, then Z 

(1) and Z 

(2) are 3-mode unfoldings of ef-

ective space-time coding tensors representing a combined source-

elay coding operation. Interestingly, these effective coding tensors
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Fig. 3. Block diagram of the C-SVD receiver. 
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also satisfy a PARAFAC decomposition structure, which greatly sim-

plifies the receiver design. Note that a semi-unitary property is also

assumed for W 

T 
(3) 

, defined in Eq (31) . For the reader’s convenience,

the details about the design of the space-time coding tensors and

the proof of the semi-unitary properties of Z 

(1) , Z 

(2) , and W 

T 
(3) 

are

given, respectively, in Appendix A and Appendix B . 

Now, we capitalize on the conceptual link between the Kro-

necker product approximation (7) and the rank-one tensor approx-

imation (8) . By applying the block-matrix rearrangements intro-

duced in Section 2 , we map the matrix ˆ Y 

(SR 1 D ) to a third-order

tensor P 

(SR 1 D ) ∈ C 

M D M S 1 
×NR ×M R 1 

M S which approximately has rank-

one, i.e., 

P 

(SR 1 D ) ≈ h 

(R 1 D ) ◦ s ◦ h 

(SR 1 ) . (39)

In a similar way, for the received signal tensor X 

(SR 2 D ) , we

can find an approximation to a rank-one tensor P 

(SR 2 D ) ∈
C 

M D M S 2 
×NR ×M R 2 

M S given by 

P 

(SR 2 D ) ≈ h 

(R 2 D ) ◦ s ◦ h 

(SR 2 ) . (40)

Finally, for the received signal tensor X 

(SR 1 R 2 D ) , applying the block-

matrix mapping of Section 2 , a rank-one approximation to the fol-

lowing fourth-order tensor will be solved at the receiver 

P 

(SR 1 R 2 D ) ≈ h 

(R 2 D ) ◦ s ◦ h 

(R 1 R 2 ) ◦ h 

(SR 1 ) , (41)

with P 

(SR 1 R 2 D ) ∈ C 

M D M S 2 
×NR ×M S 1 

M R 2 
×M R 1 

M S and h 

(R 1 R 2 ) =
vec (H 

(R 1 R 2 ) T ) . 

4.1. Design requirements 

To solve the Kronecker approximation problems (35) and (37) ,

the effective coding matrices Z 

(1) , Z 

(2) , W 

T 
(3) 

must have full row-

rank to be right invertible. As we have discussed before, we choose

a semi-unitary design for these matrices, which naturally fulfills

such a requirement, while avoiding the calculation of pseudo-

inverses. Hence, in terms of system parameter choices, we obtain

the following inequalities that have to be satisfied by the proposed

design: 

P ≥ F 1 ≥ M S R, (42)

J ≥ F 2 ≥ M R 1 M S 1 , (43)

K ≥ F 3 ≥ M R 2 M S 2 . (44)

The proof of (42) –(44) is given in the Appendix C . 

5. Proposed semi-blind receivers 

In this section, we derive two semi-blind receivers that com-

bine the tensor received signals of the multiple relay links via cou-

pled rank-one tensor approximation problems while exploiting co-

operative diversity in different ways. The first algorithm, referred

to as coupled-SVD (C-SVD), illustrated in Fig. 3 , estimates all the

involved communication channels and transmitted symbols in a

closed form. The second solution consists of a coupled alternat-

ing least squares (C-ALS) algorithm that combines estimates from

multiple cooperative links while avoiding matrix inversions due

to the rank-one property of the involved signals. Before present-

ing the proposed receivers, we start with the tensor-based mod-

els for the signals received at the destination from the two re-

lays during Phases 2 and 3, respectively. Exploiting the orthogonal

PARAFAC decomposition of the space-time coding tensors, we cast

joint channel and symbol estimation as coupled rank-one tensor

approximation problems. 
.1. C-SVD receiver 

After the space-time decoding stage, the destination extracts

hree noisy rank-one tensors given by (39), (40) , and (41) . In the

ollowing, let us recall these three tensors for convenience 

 

(SR 1 D ) ≈ h 

(R 1 D ) ◦ s ◦ h 

(SR 1 ) (45)

 

(SR 2 D ) ≈ h 

(R 2 D ) ◦ s ◦ h 

(SR 2 ) (46)

 

(SR 1 R 2 D ) ≈ h 

(R 2 D ) ◦ s ◦ h 

(R 1 R 2 ) ◦ h 

(SR 1 ) (47)

The C oupled- SVD receiver combines these tensor signals to

ointly estimate symbols and channels estimation by means of

VDs of appropriate n -mode unfoldings. First, we consider symbol

stimation. By coupling the tall 2-mode unfoldings of these ten-

ors, we have 
 

 

P 

(SR 1 D ) T 
(2) 

P 

(SR 2 D ) T 
(2) 

P 

(SR 1 R 2 D ) T 
(2) 

⎤ 

⎦ ≈

⎡ 

⎣ 

(h 

(SR 1 ) � h 

(R 1 D ) ) 

(h 

(SR 2 ) � h 

(R 2 D ) ) 

(h 

(SR 1 ) � h 

(R 1 R 2 ) 
� h 

(R 2 D ) ) 

⎤ 

⎦ s T . (48)

q. (48) is an approximation to a rank-one matrix. Computing the

VD of (48) as U s �s V 

H 
s , the first right singular vector only pro-

ide us a basis, i.e., ˆ s = α1 V 

∗
s (: , 1) 

, where α1 is a scalar factor that

ompensates the orthonormal basis from the SVD. Assuming the

nowledge of one symbol, say, S (1,1) , the scalar factor is found as

1 = S (1 , 1) / V 

∗
s (1 , 1) 

. At the end, the transmitted symbol matrix is ob-

ained by applying the unvec operator, i.e., ˆ S = unvec ( ̂ s ) ∈ C 

N×R . 

To estimate the channel ˆ h 

(R 2 D ) , the matrices P 

(SR 2 D ) T 

(1) 
and

 

(SR 1 R 2 D ) T 

(1) 
, denoting the tall 1-mode unfoldings of the tensors

 

(SR 2 D ) and P 

(SR 1 R 2 D ) respectively, are coupled to form another

ank-one matrix, as follows 

P 

(SR 2 D ) T 
(1) 

P 

(SR 1 R 2 D ) T 
(1) 

]
≈

[
(h 

(SR 2 ) � s ) 

(h 

(SR 1 ) � h 

(R 1 R 2 ) 
� s ) 

]
h 

(R 2 D ) T . (49)

y computing its SVD as U 

(R 2 D ) �(R 2 D ) V 

(R 2 D ) H , we have that

ˆ 
 

(R 2 D ) = unvec ( ̂  h 

(R 2 D ) ) ∈ C 

M D ×M S 2 , where ˆ h 

(R 2 D ) = α2 V 

(R 2 D ) ∗
(: , 1) 

and

2 = H 

(R 2 D ) 

(1 , 1) 
/ V 

(R 2 D ) ∗
(1 , 1) 

. 

For the estimation of the channel between source and Relay 1,

he C-SVD receiver couples the tall 3-mode unfolding of P 

(SR 1 D ) 

ith the tall 4-mode unfolding of P 

(SR 1 R 2 D ) , yielding another rank-

ne matrix approximation as 

P 

(SR 1 D ) T 
(3) 

P 

(SR 1 R 2 D ) T 
(4) 

]
≈

[
(s � h 

(R 1 D ) ) 

( h 

(R 1 R 2 ) 
� s � h 

(R 2 D ) ) 

]
h 

(SR 1 ) T . (50)

omputing the SVD of (50) as U 

(SR 1 ) �(SR 1 ) V 

(SR 1 ) H , the channel is

stimated as ˆ h 

(SR 1 ) = α3 V 

(SR 1 ) ∗
(: , 1) 

with α3 = H 

(SR 1 ) 

(1 , 1) 
/ V 

(SR 1 ) ∗
(1 , 1) 

. To elimi-

ate the scaling ambiguities in the estimated channels, the knowl-

dge of one entry of each channel matrix suffices. In practice, a
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raining pilot can be used to estimate the unknown channel coeffi-

ient beforehand. However, this training-phase will not be counted

n the system transmission rate, due to the fact that the total num-

er of symbol periods needed in this phase is too small compared

o the total time redundacy in the proposed system. The same as-

umption was adopted in Ximenes et al. [22] and Favier et al. [23] .

he C-SVD algorithm is summarized in Algorithm 1 . 

lgorithm 1 C-SVD. 

1: Inputs: P 

(SR 1 R 2 D ) , P 

(SR 1 D ) and P 

(SR 2 D ) ; 

2: Estimate the system parameters computing rank-one SVDs and

selecting the right dominant singular vector from the following

unfoldings: 

ˆ s : from Eq. (48); 
ˆ h 

(R 2 D ) : from Eq. (49); 
ˆ h 

(SR 1 ) : from Eq. (50); 
ˆ h 

(R 1 D ) : using P 

(SR 1 D ) T 

(1) 
; 

ˆ h 

(SR 2 ) : using P 

(SR 2 D ) T 

(3) 
; 

ˆ h 

(R 1 R 2 ) 

: using P 

(SR 1 R 2 D ) T 

(3) 
; 

3: Apply the unvec operator to recover ˆ S , ˆ H 

(R 2 D ) , ˆ H 

(S 1 R ) , ˆ H 

(R 1 D ) ,

ˆ H 

(S 2 R ) and 

ˆ H 

(R 1 R 2 ) T 
. 

4: Remove the scaling ambiguity according to the knowledge of

one element in each system parameter factor matrix. 

.2. C-ALS receiver 

The Coupled-ALS receiver is based on the well-known trilinear

lternating least squares (ALS) algorithm [36] , which provides esti-

ates of the channel and symbol matrices by solving LS problems

n an alternating way. Despite its conceptual simplicity, the ALS al-

orithm may suffer from convergence problems due to its sensi-

ivity to initialization. Moreover, each iteration of trilinear ALS in-

olves three matrix inverses, which can be computationally com-

lex depending on the tensor dimensions. In our context, how-

ver, the problem is simpler since we are dealing only with rank-

ne tensor approximations avoiding the computation of matrix in-

erses, while yielding fast convergence of the algorithm, which is

sually achieved within a few iterations. It is worth mentioning

hat other algorithms exist in the literature to solve the rank-one

ensor approximation problem [33–35] . 

Using Eqs. (48) –(50) , and the unfoldings P 

(SR 2 D ) T 

(3) 
, P 

(SR 1 D ) T 

(1) 
and

 

(SR 1 R 2 D ) T 

(3) 
, the C-ALS receiver solves the following cost functions 

  = argmin 

s 

∥∥∥∥∥∥∥
⎡ 

⎣ 

P 

(SR 1 D ) T 
(2) 

P 

(SR 2 D ) T 
(2) 

P 

(SR 1 R 2 D ) T 
(2) 

⎤ 

⎦ −

⎡ 

⎢ ⎣ 

ˆ h 

(SR 1 ) � ˆ h 

(R 1 D ) 

ˆ h 

(SR 2 ) � ˆ h 

(R 2 D ) 

ˆ h 

(SR 1 ) �
ˆ h 

(R 1 R 2 ) 

� ˆ h 

(R 2 D ) 

⎤ 

⎥ ⎦ 

s T 

∥∥∥∥∥∥∥
2 

(51) 

ˆ 
 

(R 2 D ) = argmin 

h (R 2 D ) 

∥∥∥∥∥
[

P 

(SR 2 D ) T 
(1) 

P 

(SR 1 R 2 D ) T 
(1) 

]
−

[ 

ˆ h 

(SR 2 ) � ˆ s 

ˆ h 

(SR 1 ) �
ˆ h 

(R 1 R 2 ) 

� ˆ s 

] 

h 

(R 2 D ) T 

∥∥∥∥∥
2 

(52) 

ˆ 
 

(SR 1 ) = argmin 

h (R 2 D ) 

∥∥∥∥∥
[

P 

(SR 1 D ) T 
(3) 

P 

(SR 1 R 2 D ) T 
(4) 

]
−

[ 

ˆ s � ˆ h 

(R 1 D ) 

ˆ h 

(R 1 R 2 ) 

� ˆ s � ˆ h 

(R 2 D ) 

] 

h 

(SR 1 ) T 

∥∥∥∥∥
2 

(53) 
m  
ˆ 
 

(SR 2 ) = argmin 

h (SR 2 ) 

∥∥∥P 

(SR 2 D ) T 
(3) 

− ( ̂ s � ˆ h 

(R 2 D ) ) h 

(SR 2 ) T 

∥∥∥2 

(54) 

ˆ 
 

(R 1 D ) = argmin 

h (R 1 D ) 

∥∥∥P 

(SR 1 D ) T 
(1) 

− ( ̂  h 

(SR 1 ) � ˆ s ) h 

(R 1 D ) T 

∥∥∥2 

(55) 

ˆ 
 

(R 1 R 2 ) 

= argmin 

h 
(R 1 R 2 ) 

∥∥∥P 

(SR 1 R 2 D ) T 
(3) 

− ( ̂  h 

(SR 1 ) � ˆ s � ˆ h 

(R 2 D ) ) h 

(R 1 R 2 ) T 
∥∥∥2 

(56) 

The solutions of Eqs. (51) –(56) are given by 

  = 

1 

3 

[
P 

(SR 1 D ) 
(2) 

P 

(SR 2 D ) 
(2) 

P 

(SR 1 R 2 D ) 
(2) 

]
⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
ˆ h (SR 1 ) �ˆ h (R 1 D ) 

)
∗

|| ̂ h (SR 1 ) || 2 
2 
·|| ̂ h (R 1 D ) || 2 

2 (
ˆ h (SR 2 ) �ˆ h (R 2 D ) 

)
∗

|| ̂ h (SR 2 ) || 2 
2 
·|| ̂ h (R 2 D ) || 2 

2 (
ˆ h (SR 1 ) �

ˆ h 
(R 1 R 2 ) 

�ˆ h (R 2 D ) 

)
∗

|| ̂ h (SR 1 ) || 2 
2 
|| ̂ h 

(R 1 R 2 ) || 2 
2 
|| ̂ h (R 2 D ) || 2 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (57) 

ˆ 
 

(R 2 D ) = 

1 

2 

[
P 

(SR 2 D ) 
(1) 

P 

(SR 1 R 2 D ) 
(1) 

]
⎡ 

⎢ ⎢ ⎣ 

(
ˆ h (SR 2 ) �ˆ s 

)
∗

|| ̂ h (SR 2 ) || 2 
2 
·|| ̂ s || 2 

2 (
ˆ h (SR 1 ) �

ˆ h 
(R 1 R 2 ) 

�ˆ s 

)
∗

|| ̂ h (SR 2 ) || 2 
2 
·|| ̂ h 

(R 1 R 2 ) || 2 
2 
|| ̂ s || 2 

2 

⎤ 

⎥ ⎥ ⎦ 

, (58) 

ˆ 
 

(SR 1 ) = 

1 

2 

[
P 

(SR 1 D ) 
(3) 

P 

(SR 1 R 2 D ) 
(4) 

]
⎡ 

⎢ ⎢ ⎣ 

(
ˆ s �ˆ h (R 1 D ) 

)
∗

|| ̂ s || 2 
2 
·|| ̂ h (R 1 D ) || 2 

2 (
ˆ h 

(R 1 R 2 ) 

�ˆ s �ˆ h (R 2 D ) 

)
∗

|| ̂ h 
(R 1 R 2 ) || 2 

2 
·|| ̂ s || 2 

2 
·|| ̂ h (R 2 D ) || 2 

2 

⎤ 

⎥ ⎥ ⎦ 

, (59) 

ˆ 
 

(SR 2 ) = P 

(SR 2 D ) 
(3) 

(
( ̂ s � ˆ h 

(R 2 D ) ) ∗

|| ̂ s || 2 
2 

· || ̂  h 

(R 2 D ) || 2 
2 

)
, (60) 

ˆ 
 

(R 1 D ) = P 

(SR 1 D ) 
(1) 

(
( ̂  h 

(SR 1 ) � ˆ s ) ∗

|| ̂  h 

(SR 1 ) || 2 
2 

· || ̂ s || 2 
2 

)
, (61) 

ˆ 
 

(R 1 R 2 ) 

= P 

(SR 1 R 2 D ) 
(3) 

(
( ̂  h 

(SR 1 ) � ˆ s � ˆ h 

(R 2 D ) ) ∗

|| ̂  h 

(SR 1 ) || 2 
2 

· || ̂ s || 2 
2 

· || ̂  h 

(R 2 D ) || 2 
2 

)
. (62) 

From steps (57) –(62) the process is repeated until convergence

s achieved. The relative error at the end of the i th C-ALS iteration

s given by 

 i = 

|| ̂  P i − P || 2 F 

|| P || 2 
F 

, (63) 

here P is the block matrix that concatenates column-wise the

hree unfoldings P 

(SR 1 D ) 

(2) 
, P 

(SR 2 D ) 

(2) 
, and P 

(SR 1 R 2 D ) 

(2) 
, while ˆ P is its re-

onstructed version from the estimated channels and symbols. The

onvergence at the i th iteration is declared when | e i −1 − e i | ≤ 10 −6 .

he C-ALS algorithm is summarized in Algorithm 2 . 

. Simulation results 

In this section, we evaluate the performance of the C-SVD and

he C-ALS receiver in terms of symbol error rate (SER), through-

ut, normalized mean square error (NMSE) for channel estimation,

nd computational complexity. The results are averaged over L =
0 4 Monte Carlo runs and each run corresponding to an indepen-

ent realization of the channels, symbols, and noise. The channel

atrices are assumed to have i.i.d. complex Gaussian entries with

ero-mean and unitary variance, except for the simulation results

f Section 6.5 , where the average channel power is varied to con-

ider the effect of path loss on the cooperative links. 

Otherwise stated, 64-QAM signals are assumed and the trans-

itted symbols are normalized at each Monte Carlo run to unity
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Algorithm 2 C-ALS. 

1: Initialize randomly ˆ h 

(R 2 D ) 
0 

, ˆ h 

(SR 1 ) 
0 

, ˆ h 

(SR 2 ) 
0 

, ˆ h 

(R 1 D ) 
0 

and 

ˆ h 

(R 1 R 2 ) 
0 

; 

it = 0 ; 

2: it = it + 1; 

3: Calculate the estimate for: 

ˆ s it using Eq. (57) 

ˆ h 

(R 2 D ) 

it 
using Eq. (58) 

ˆ h 

(SR 1 ) 

it 
using Eq. (59) 

ˆ h 

(SR 2 ) 

it 
using Eq. (60) 

ˆ h 

(R 1 D ) 

it 
using Eq. (61) 

ˆ h 

(R 1 R 2 ) 

it using Eq. (62) 

4: Return to step 2 and repeat until convergence; 

5: Apply the unvec operator to recover ˆ S , ˆ H 

(R 1 D ) , ˆ H 

(R 2 D ) , ˆ H 

(SR 1 ) , 
ˆ H 

(SR 2 ) and 

ˆ H 

(R 1 R 2 ) . 

Fig. 4. Proposed receivers vs the iterative proposed in [24] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Normalized mean square error of the system effective channel. 
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t  
symbol energy ( E s = 1 ) for each data stream, i.e., E 

[
S H S 

]
= NI R . The

SER, throughput, and NMSE curves are plotted as a function of the

average E S / N 0 . At each run, the E S / N 0 ratio is set by controlling the

noise variance at the relays and the destination (assumed to be

equal). The coding tensors C, W and T are normalized by the fac-

tors 1 / 
√ 

F 1 RM S , 1 / 
√ 

F 2 M R 1 
M S 1 

and 1 / 
√ 

F 3 M R 2 
M S 2 

, respectively, to

ensure that for P = RM S , J = M S 1 
M R 1 

and K = M S 2 
M R 2 

, the coding

tensors do not provide any power enhancement. Note that, with

this normalization, for P > RM S , J > M R 1 
M S 1 

and K > M R 2 
M S 2 

, the

effective coding matrices satisfy Z 

(i ) Z 

(i ) H = βI , where 
√ 

β is the

power enhancement factor, with i = { 1 , 2 } . 
6.1. Symbol error rate performance 

We first evaluate the receivers’ performance in terms of their

symbol error rate and compare with the one presented in [24] .

The simulated scenario is the following: N = 10 , R = 2 , M S = 2 ,

M D = 4 , P = 4 , J = K = 2 , M S 1 
= M S 2 

= 1 , M R 1 
= M R 2 

= 2 , and F 1 =
RM S , F 2 = M R 1 

M S 1 
, F 3 = M R 2 

M S 2 
. For the system in [24] , a 4-QAM

constellation is considered, the number of pilot symbols per time-

slot is N p = 4 and the number of time-slots K = 10 . The parameters

were chosen properly to ensure that both systems have the same

spectral efficiency. Also, in order to have a reference, we simulate

a Zero-Forcing (ZF) receiver with perfect CSI, using Eq. (51) . Fig. 4

shows that by comparing the C-SVD with the C-ALS, the perfor-

mance is almost the same. However, comparing with the system
n [24] , our proposed receivers show a remarkable gain over the

omb-ALS. This is due the fact that the proposed approach ex-

loits the space-time diversity using space-time coding tensors at

he source and relay, while the system in [24] is a supervised one

ith a long pilot sequence and does not apply any space-time cod-

ng at the source. In addition to this performance gain, since our

roposed receivers are based on Nested Tucker models, they can

xploit a more flexible system design than the ones proposed in

imenes et al. [22] and Cavalcante et al. [24] , which are based on

he Nested PARAFAC and PARATUCK-2 models, respectively. More

pecifically, the proposed receivers can operate with relay stations

aving different numbers of transmit and receive antennas, in con-

rast to the ones in Ximenes et al. [22] and Cavalcante et al. [24] .

uch a design flexibility is crucial since we can properly choose the

umber of transmit and receive antennas at the relays to fulfill the

esign requirements in (43) and (44) using small code lengths ( J

nd K ). 

.2. Channel estimation performance 

The NMSE is given as 

MSE = 

1 

L 

L ∑ 

l=1 

|| H (l) − ˆ H (l) || 2 F 

|| H (l) || 2 F 

, (64)

here H represents all channel matrices: H 

( SR ) , H 

( RR ) and H 

( RD ) , and

 is the total number of Monte Carlo realizations. In order to com-

are with the system in [24] , we compute, in Fig. 5 , the NMSE of

he effective estimated MIMO channel without tensor space-time

oding (for this scenario, M S 1 
= M S 2 

= 2 and J = K = 4 ), which is

iven by: 

 

X 

(SR 1 D ) 

X 

(SR 2 D ) 

X 

(SR 1 R 2 D ) 

] 

= 

⎡ 

⎣ 

ˆ H 

(R 1 D ) ˆ H 

(SR 1 ) 

ˆ H 

(R 2 D ) ˆ H 

(SR 2 ) 

ˆ H 

(R 2 D ) ˆ H 

(R 1 R 2 ) ˆ H 

(SR 1 ) 

⎤ 

⎦ 

︸ ︷︷ ︸ 
H eff. 

S T . (65)

t can be observed that our rank-one receivers provide a perfor-

ance gain over the one proposed in [24] . This can be attributed

o the fact that the proposed solution has an efficient noise sup-

ression, due to the pre-processing stage and coupled rank-one ap-

roach. In Fig. 6 , we present the individual channel NMSE perfor-

ance of the proposed C-SVD and C-ALS receivers. It can be no-

iced that the relay-destination channels are estimated with higher
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Fig. 6. Normalized mean square error of estimated channels. 

Fig. 7. ALS iterations for convergence. 
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M = 2 , J = 8 and P = 4 . 
ccuracy than the relay-relay channel and source-relay channels, as

xpected. Such results can be explained by the fact the for relay-

estination channels the signal has already be encoded by three

pace-time coding tensors, for relay-relay channels, the signal was

ncoded by two tensors, and for source-relay channels, the sig-

al was encoded only at the source. Comparing the proposed re-

eivers, starting from the source-relay channel estimation, which

s the same for both, it can be noticed that for relay-relay and

elay-destination channels, the C-SVD receiver offers a small gain

n performance over the C-ALS receiver. 

.3. ALS iterations 

In Fig. 7 , we plot the total number of iterations required for the

onvergence of the C-ALS receiver. As a reference for comparisons,

e also plot the convergence of the Nested-Tucker based ALS re-

eiver of Favier et al. [23] , which solves the same problem but us-

ng a different tensor model. Therein, the authors also proposed

 random exponential design for the space-time coding tensors,

hile our approach assumes the proposed orthogonal tensor code

esign based on a exact Khatri-Rao factorization of the DFT matrix.

e can observe that the proposed tensor code design results in a

ignificantly lower number of iterations required for convergence,

orroborating the importance of the tensor code structure at the

eceiver. 
.4. Computational complexity 

In this experiment we evaluate the computational complexity of

ach semi-blind receiver, in terms of floating-point operations per

econd (FLOPS). Given matrices A ∈ C 

m ×n and B ∈ C 

n ×p , the num-

er of FLOPS associated with the multiplication of these two matri-

es is given by O(4(mnp)) (neglecting the additions). For the Kro-

ecker product, the total FLOPS is O(4(mn 2 p)) , while for the com-

utation of the largest singular value and largest eigenvector we

pt for the Power Method approach instead of computing the SVD

f a rank-one matrix, for being a cheap choice in terms of compu-

ational complexity (see [37] ). The Power Method leads to a cost

f I(n 2 m + n 2 ) (neglecting the additions and vector normalization)

LOPS, where I is the number of iterations of the Power Method, in

hich, in our case, for dealing with approximately rank-one matri-

es, I = 1 . We compare our proposed receivers with the one in [24] .

e can observe in Fig. 8 , that the receiver in [24] needs less com-

utational effort than the ours. However, in terms of performance

SER and NMSE) a significant performance gain over the receiver

n [24] can be observed in Figs. 4 and 5 . Comparing the C-SVD and

-ALS, the first can benefit from a parallel computation, as shown

n Fig. 3 , while the second one is more attractive at higher E S / N 0 

alues, due to the smaller number of iterations required for con-

ergence ( Fig. 7 ). 

.5. Throughput performance 

In a final experiment, we study the performance of the C-SVD

eceiver in terms of throughput computed in bits per channel use,

hich is the rate of the transmitted information ( NR ) over the to-

al redundancy in a multi-relaying scenario with a given number of

hases. This study provides an insight into the trade-off of the pro-

osed receiver when different modulation and coding schemes are

onsidered. We compare the performance of the proposed three-

hases (three-hop) system with a two-phases (two-hop) system

the case where the source is assisted only by Relay 1, i.e., only

he signal X 

(SR 1 D ) is considered). In order for both system have the

ame spectral efficiency, the following parameters were chosen: 

• Three-Phase System : N = 10 , R = 2 , M S = 2 , M D = 4 , M S 1 
=

M S 2 
= 1 , M R 1 

= M R 2 
= 2 J = K = 2 and P = 4 . 

• Two-Phase System : N = 10 , R = 2 , M S = 2 , M D = 4 , M R 1 
= 4
S 1 
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Fig. 9. Throughput for different modulation schemes and code length, P and J val- 

ues. 

Fig. 10. SER for different modulation schemes and code length, P and J values. P 

values. 
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c  
In order to evaluate the performance in a more challenging sce-

nario, we assume spatially correlated channels, by adopting the fol-

lowing the classical model: 

H = ( R Rx ) 
1 / 2 H w 

( R Tx ) 
H / 2 , (66)

where R Rx and R Tx are the receive and transmit correlation ma-

trices, respectively and H w 

is a spatially white channel matrix

whose coefficients follow a zero-mean circularly-symmetric com-

plex Gaussian distribution. The correlation factor ρ for each chan-

nel entry is shown in Figs. 9 and 10 . 

The throughput is calculated according to the following for-

mula: 

T = (1 − PER ) T max , (67)

where PER stands for the packet error rate and T max is the maxi-

mum achieved throughput which, for the two- and three-hop sys-

tems, are respectively given by 

T 

(2) 
max = 

R log 2 (M 

(2) ) 

P (1 + J) 
, (68)
i

 

(3) 
max = 

R log 2 (M 

(3) ) 

P (1 + J + K + JK) 
, (69)

here M 

( i ) is the number of bits per symbol of the M -QAM con-

tellation used by these systems, i = 2 , 3 . In this work, we adopt

he following mapping from BER to PER [38] 

ER = 1 − (1 − BER ) b l , (70)

here b l = N log 
M 

(i ) 

2 is the number of bits of a packet. Also, defin-

ng d as the distance between the source and destination, we con-

ider the following positioning of the relays 

 

(SR 1 ) = 0 . 6 d d (R 1 D ) = 0 . 5 d 

 

(SR 2 ) = 0 . 5 d d (R 2 D ) = 0 . 6 d d (R 1 R 2 ) = 0 . 6 d, (71)

here d (SR 1 ) , d (R 1 D ) , d (SR 2 ) , d (R 2 D ) and d (R 1 R 2 ) are the distances be-

ween the source and Relay 1, Relay 1 and destination, source and

elay 2, Relay 2 and destination, Relay 1 and Relay 2, respectively.

he path loss follows the classical model 

 

(i ) 
R 

= P T 

[ 
d (i ) 

0 

d 

] 
γ , (72)

here d (i ) 
0 

and γ are, respectively, the reference distance for the

 th link in (71) , and the path loss exponent ( γ = 3 ), while P T =
R is the total transmitted signal power. Since the two-hop system

nly has one relay to assist the source, the modulation scheme and

he code length ( P, J , or K ) are adjusted to ensure that all systems

ompared have the same rate. 

In Fig. 9 , it can be noticed that the three-hop system achieves

he maximum rate in a lower E S / N 0 range than the two-hop sys-

em, even with the two-hop system having more antennas at the

elay station compared to the relays in the three-hop system. The

imulation results in Fig. 10 , which show the SER performance,

orroborate our conclusions in Fig. 9 , showing that the proposed

hree-hop system is more attractive than the two-hop system in

his scenario. 

. Conclusions 

In this paper, we have proposed two semi-blind receivers for

ulti-relaying MIMO systems by coupling rank-one tensor approx-

mations problems for multiple cooperative links after space-time

ombining at the destination. We show that the rank-one ap-

roach combined with orthogonal codes provides an excellent per-

ormance in comparison with the supervised receiver proposed in

24] . The C-SVD receiver offers closed-form joint channel and sym-

ol estimation that can benefit from parallel processing, being the

referable solution for low signal to noise ratios, while the C-ALS

eceiver offers a better performance-complexity tradeoff for higher

ignal to noise ratios. Moreover, our throughput results using dif-

erent modulation and tensor coding schemes have shown interest-

ng tradeoffs between systems with two and three -hop, for scenar-

os where the code length of the space-time coding tensors at the

elays ( J and K ) is small. Perspectives of this work include the gen-

ralization of the proposed semi-blind receivers to multiuser sce-

arios, while taking into account more realistic effects such as tim-

ng and carrier frequency offsets. 
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ppendix A. Tensor Coding Design 

We propose an orthogonal design for the space-time coding

ensors used at the source and relays. The resulting coding struc-

ure is exploited in the first step of the proposed semi-blind re-

eiver to decode the received signals at low-complexity, before

oint channel and symbol estimation. 

First, we impose a PARAFAC structure for each coding tensor

sed at the source, Relay 1 and Relay 2, as follows 

 = I 3 ,F 1 ×1 C 1 ×2 C 2 ×3 C 3 ∈ C 

M S ×R ×P (A.1)

 = I 3 ,F 2 ×1 W 1 ×2 W 2 ×3 W 3 ∈ C 

M S 1 
×M R 1 

×J (A.2)

 = I 3 ,F 3 ×1 T 1 ×2 T 2 ×3 T 3 ∈ C 

M S 2 
×M R 2 

×K , (A.3)

here C 1 ∈ C 

M S ×F 1 , C 2 ∈ C 

R ×F 1 , C 3 ∈ C 

P×F 1 , W 1 ∈ C 

M S 1 
×F 2 , W 2 ∈

 

M R 1 
×F 2 , W 3 ∈ C 

J×F 2 , T 1 ∈ C 

M S 2 
×F 3 , T 2 ∈ C 

M R 2 
×F 3 and T 3 ∈ C 

K×F 3 are

he factor matrices of the tensors C, W and T respectively. 

In order to simplify the notation, we define z (1) 
jp 

and z (2) 
kp 

as the

ffective coding vectors 

 

(1) 
jp 

= vec (C 

T 
..p � W .. j ) , ∈ C 

M S 1 
RM R 1 

M S ×1 (A.4)

 

(2) 
kp 

= vec (C 

T 
..p � T ..k ) ∈ C 

M S 2 
RM R 2 

M S ×1 . (A.5)

ince the only difference between z (1) 
jp 

and z (2) 
kp 

is the space-time

oding tensor at the relays, and noting that these tensors both have

 PARAFAC structure, we can apply Properties (1), (2), (3) and (4) in

q. (A.4) , yielding 

 

(1) 
jp 

= vec (C 2 D p (C 3 ) C 

T 
1 � W 1 D j (W 3 ) W 

T 
2 ) (A.6)

= vec [(C 2 � W 1 )( D p (C 3 ) � D j (W 3 ))(C 1 � W 2 ) 
T ] (A.7)

= [(C 1 � W 2 ) � (C 2 � W 1 )](C 3 p � W 3 j ) 
T , (A.8)

here C 3 p and W 3 j 
are p th and j th row from C 3 and W 3 ,

espectively. By stacking the JP vectors as columns of Z 

(1) ∈
 

M S 1 
RM R 1 

M S ×JP 
, and defining G 1 = (C 2 � W 1 ) ∈ C 

M S 1 
R ×F 2 F 1 , G 2 =

(C 1 � W 2 ) ∈ C 

M R 1 
M S ×F 2 F 1 , G 3 = (C 3 � W 3 ) ∈ C 

JP×F 2 F 1 , we have 

 

(1) = [ z (1) 
1 , 1 

, . . . , z (1) 
J, 1 

, . . . , z (1) 
J,P 

] 

= (G 2 � G 1 ) G 

T 
3 . (A.9) 

n the same way we can apply the steps in (A .6) –(A .8) to

q. (A.5) and derive the matrix Z 

(2) ∈ C 

M S 2 
RM R 2 

M S ×KP 

 

(2) = [ z (2) 
1 , 1 

, . . . , z (2) 
K, 1 

, . . . , z (2) 
K,P 

] 

= (B 2 � B 1 ) B 

T 
3 , (A.10) 

here B 1 = (C 2 � T 1 ) ∈ C 

M S 2 
R ×F 3 F 1 , B 2 = (C 1 � T 2 ) ∈ C 

M R 2 
M S ×F 3 F 1 

nd B 3 = (C 3 � T 3 ) ∈ C 

KP×F 3 F 1 . 

From (A.9) and (A.10) , it is clear that the space-time filters Z 

(1) 

nd Z 

(2) have a PARAFAC structure. Such a structure is exploited to

nsure Z 

(1) and Z 

(2) are semi-unitary, so that the macthed filtering

teps (36) and (38) can be applied. The semi-unitary property of

he space-time filters is proved in Appendix B . 

W

ppendix B. Proof of the Semi-unitary Property 

As previously defined in Appendix A , let us consider the fac-

or matrices of the coding tensors C 1 ∈ C 

M S ×F 1 , C 2 ∈ C 

R ×F 1 , C 3 ∈
 

P×F 1 , W 1 ∈ C 

M S 1 
×F 2 , W 2 ∈ C 

M R 1 
×F 2 , W 3 ∈ C 

J×F 2 , T 1 ∈ C 

M S 2 
×F 3 , T 2 ∈

 

M R 2 
×F 3 and T 3 ∈ C 

K×F 3 . Given the PARAFAC structures for Z 

(1) and

 

(2) in Eq. (A.9) and (A.10) respectively, our goal is to design these

actor matrices such that Z 

(1) Z 

(1) H = I M S 1 
RM R 1 

M S 
and Z 

(2) Z 

(2) H =
 M S 2 

RM R 2 
M S 

. Let us take Z 

(1) as an example, and define the matrix

 

(1) 
P 

∈ C 

M S 1 
M R 1 

M S R ×JP 
as 

 

(1) 
P 

= �Z 

(1) 

= �[(C 1 � W 2 ) � (C 2 � W 1 )](C 3 � W 3 ) 
T 

= [(C 2 � C 1 ) � (W 2 � W 1 )](C 3 � W 3 ) 
T , (B.1) 

here � is a permutation matrix that exchanges the rows of Z 

(1) 

n order to obtain Eq. (B.1) . Note that if Z 

(1) 
P 

has orthogonal rows,

hen Z 

(1) would also have orthogonal rows, since a permutation

atrix is orthogonal. Defining as C = C 2 � C 1 ∈ C 

M S R ×F 1 and W =
 2 � W 1 ∈ C 

M S 1 
M R 1 

×F 2 , and replacing them in Eq. (B.1) , we have 

 

(1) 
P 

Z 

(1) H 
P 

= ( C � W ) G 

T 
3 G 

∗
3 ( C � W ) H . (B.2) 

oting that G 3 = C 3 � W 3 , and choosing C 3 and W 3 as DFT matri-

es (assuming P = F 1 and J = F 2 ), we have: 

 

T 
3 G 

∗
3 = 

1 

F 1 F 2 
(C 3 � W 3 ) 

T (C 3 � W 3 ) 
∗

= 

1 

F 1 F 2 
(C 

T 
3 C 

∗
3 � W 

T 
3 W 

∗
3 ) 

= I F 1 F 2 , 

here 1 √ 

F 1 F 2 
is the normalization factor for the DFTs matrices. The

ondition Z 

(1) 
P 

Z 

(1) H 
P 

= I M S 1 
RM R 1 

M S 
is now dependent on the choice

f C ∈ C 

F 1 ×F 1 and W ∈ C 

F 2 ×F 2 . Choosing a DFT structure for these

atrices implies 

 

(1) 
P 

Z 

(1) H 
P 

= 

1 

RM S M R 1 M S 1 

( C C 

H 
) � ( W W 

H 
) 

= I RM S M R 1 
M S 1 

. (B.3) 

ince each column of the DFT matrix is a Vandermonde vector, it

urns out that C and W can be factorized exactly as the Khatri-Rao

roduct of two or more lower-dimensional matrices. As example,

onsider the DFT structure for C as 

 = 

1 √ 

F 1 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 · · · 1 

1 ω ω 

2 · · · ω 

F 1 −1 

1 ω 

2 ω 

4 · · · ω 

2(F 1 −1) 

. . . 
. . . 

. . . · · ·
. . . 

1 ω 

F 1 −1 ω 

2(F 1 −1) · · · ω 

(F 1 −1)(F 1 −1) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

here ω = e −2 jπ/F 1 . The ( f 1 + 1 )th column of C can be decomposed

s: 

 f 1 +1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

ω 

ω 

2 

. . . 

ω 

f 1 (R −1) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

M S 

�

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

ω 

ω 

2 

. . . 

ω 

f 1 (M S −1) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (B.4) 

herefore, factorizing the F 1 columns of C implies that C = C 2 � C 1 ,

rom which we find C 1 and C 2 . The same is valid to find W 1 and

 from W . 
2 
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In the same way as for Z 

(1) 
P 

, we have Z 

(2) 
p ∈ C 

M S 2 
M R 2 

M S R ×KP 
de-

fined as 

Z 

(2) 
P 

= �Z 

(2) 

= �[(C 1 � T 2 ) � (C 2 � T 1 )](C 3 � T 3 ) 
T 

= [(C 2 � C 1 ) � (T 2 � T 1 )](C 3 � T 3 ) 
T , (B.5)

where � is a permutation matrix that exchanges the rows of Z 

(2) 

defined in Eq. (A.10) . In this case, defining T = T 2 � T 1 ∈ C 

M R 2 
M S 2 

×F 3 

and noting that B 3 = C 3 � T 3 , we have 

Z 

(2) 
P 

Z 

(2) H 
P 

= ( C � T ) B 

T 
3 B 

∗
3 ( C � T ) H . (B.6)

From Eq. (B.6) we can easily see that choosing T 3 and T as DFT ma-

trices, Z 

(2) 
P 

has orthogonal rows, i.e., Z 

(2) 
P 

Z 

(2) H 
P 

= I M S 2 
M R 2 

M S R 
, from

which we can conclude that Z 

(2) Z 

(2) H = I M S 2 
RM R 2 

M S 
. Applying the

factorization (B.4) to the columns of T we get T 1 and T 2 . Finally,

it remains to prove the semi-unitary property of W (3) , which from

Eq. (A.2) is written as 

W 

T 
(3) = (W 2 � W 1 ) W 

T 
3 (B.7)

= W W 

T 
3 . 

Since W and W 3 are assumed to be DFT matrices, we have 

W 

T 
(3) W 

∗
(3) = W W 

T 
3 W 

∗
3 W 

H 

= W I F 2 W 

H 

= I M S 1 
M R 1 

, (B.8)

which completes the proof. �

Appendix C. Code Design Requirements 

As mentioned in Section 4.1 , the matrices Z 

(1) , Z 

(2) and W 

T 
(3) 

must have full row-rank to fulfill the semi-unitary property. Let us

first recall the following properties 

• rank (A � B ) = rank (A ) rank (B ) 
• rank (AB ) = rank (A ) if B is a full rank matrix. 

The rank of Z 

(1) its equal to the rank of Z 

(1) 
P 

, and is given by 

rank (Z 

(1) 
P 

) = rank ([ C � W ] G 

T 
3 ) . (C.1)

The rank of G 

T 
3 

can be expressed as 

rank (G 

T 
3 ) = rank (C 

T 
3 � W 

T 
3 ) 

= rank (C 

T 
3 ) rank (W 

T 
3 ) . (C.2)

Since C 3 is of size P × F 1 and W 3 of size J × F 2 , for G 

T 
3 

∈ C 

F 2 F 1 ×JP 

to have full row-rank matrix, we must have rank (C 3 ) = F 1 and

rank (W 3 ) = F 2 , which requires P ≥ F 1 and J ≥ F 2 . Since the matrix

G 

T 
3 

is full row-rank, the rank of Z 

(1) 
P 

is given by 

rank (Z 

(1) 
P 

) = rank ( C � W ) 

= rank ( C ) rank ( W ) 

= rank ([ C 2 � C 1 ]) rank ([ W 2 � W 1 ]) . (C.3)

For Z 

(1) 
P 

to have full row-rank, C ∈ C 

RM S ×F 1 and W ∈ C 

M S 1 
M R 1 

×F 2 

must also have a full row-rank, which requires F 1 ≥ RM S and F 2 ≥
M S 1 

M R 1 
. Combining these conditions, we arrive at the inequalities

given in (42) –(43) . Finally, computing the rank of Z 

(2) 
P 

defined in

(B.5) , and using (C.1) , we arrive at the condition K ≥ F 3 ≥ M S 2 
M R 2 

given in (44) . �
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